Skip to main content

Rapid, Sensitive, and Simultaneous Detection of Three Foodborne Pathogens Using Magnetic Nanobead–Based Immunoseparation and Quantum Dot–Based Multiplex Immunoassay

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

Losses caused by foodborne diseases are enormous in terms of human life, illness, medical costs, and food product recalls. Rapid detection of multiple bacterial pathogens in foods is extremely important to ensure food safety. The objective of this research was to develop a multiplex immunoassay by integrating magnetic nanobeads (MNBs) for immunoseparation with quantum dots (QDs) as fluorescent labels for rapid, sensitive, and simultaneous detection of three major pathogenic bacteria, Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes, in food products. In this research, both streptavidin-conjugated MNBs (30- and 150-nm diameter) and QDs (530-, 580-, and 620-nm emission wavelength) were separately coated with biotinylated anti-Salmonella, anti–E. coli, and anti-Listeria antibodies. The immuno-MNBs were mixed with a food sample to capture the three target bacteria. After being magnetically separated from the sample, the MNB-cell conjugates were mixed with the immuno-QDs to form the MNB-cell-QD complexes, and unattached QDs were removed. The fluorescence intensity of the MNB-cell-QD complexes was measured at wavelengths of 530, 580, and 620 nm to determine the populations of Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes, respectively. This multiplex immunoassay simultaneously detected Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes at levels as low as 20 to 50 CFU/ml in food samples in less than 2 h without enrichment. The change in fluorescence intensity was linearly correlated (R 2 > 0.96) with the logarithmic value of bacterial level in the range of 10 to 103 CFU/ml. More than 85% of the three target pathogens could be simultaneously separated from food samples. The multiplex immunoassay could be expanded to detect more target pathogens, depending on the availability of specific antibodies and QDs with different emission wavelengths.

Document Type: Research Article

DOI: http://dx.doi.org/10.4315/0362-028X.JFP-11-144

Affiliations: 1: Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701; 3Ocean Nanotech, LLC, Springdale, Arkansas 72764, USA 2: Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA 3: Ocean Nanotech, LLC, Springdale, Arkansas 72764, USA

Publication date: December 1, 2011

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
iafp/jfp/2011/00000074/00000012/art00006
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more