Skip to main content

Comparison of an Automated Most-Probable-Number Technique with Traditional Plating Methods for Estimating Populations of Total Aerobes, Coliforms, and Escherichia coli Associated with Freshly Processed Broiler Chickens

Buy Article:

$37.00 plus tax (Refund Policy)


An instrument (TEMPO) has been developed to automate the most-probable-number (MPN) technique and reduce the effort required to estimate some bacterial populations. We compared the automated MPN technique with traditional microbiological plating methods and Petrifilm methods for estimating the total viable count of aerobic microorganisms (TVC), total coliforms (CC), and Escherichia coli populations (EC) on freshly processed broiler chicken carcasses (postchill whole carcass rinse [WCR] samples) and cumulative drip-line samples from a commercial broiler processing facility. Overall, 120 broiler carcasses, 36 prechill drip-line samples, and 40 postchill drip-line samples were collected over 5 days (representing five individual flocks) and analyzed by the automated MPN and direct agar plating and Petrifilm methods. The TVC correlation coefficient between the automated MPN and traditional methods was very high (0.972) for the prechill drip samples, which had mean log-transformed values of 3.09 and 3.02, respectively. The TVC correlation coefficient was lower (0.710) for the postchill WCR samples, which had lower mean log values of 1.53 and 1.31, respectively. Correlations between the methods for the prechill CC and EC samples were 0.812 and 0.880, respectively. The estimated number of total aerobes was generally greater than the total number of coliforms or E. coli recovered for all sample types (P < 2e−16). Significantly more bacteria were recovered from the prechill samples than from the postchill WCR or cumulative drip samples (P < 9.5e−12 and P < 2e−16, respectively). When samples below the limit of detection were excluded, 92.1% of the total responses were within a single log difference between the traditional plating or Petrifilm methods and the automated MPN method.

Document Type: Research Article


Affiliations: U.S. Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Russell Research Center, Athens, Georgia 30604, USA

Publication date: September 1, 2011

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more