Skip to main content

Growth Characteristics and Development of a Predictive Model for Bacillus cereus in Fresh Wet Noodles with Added Ethanol and Thiamine

Buy Article:

$37.00 plus tax (Refund Policy)


Response surface methodology was used to determine growth characteristics and to develop a predictive model to describe specific growth rates of Bacillus cereus in wet noodles containing a combination of ethanol (0 to 2% [vol/wt]) and vitamin B1 (0 to 2 g/liter). B. cereus F4810/72, which produces an emetic toxin, was used in this study. The noodles containing B. cereus were incubated at 10°C. The growth curves were fitted to the modified Gompertz equation using nonlinear regression, and the growth rate values from the curves were used to establish the predictive model using a response surface methodology quadratic polynomial equation as a function of concentrations of ethanol and vitamin B1. The model was shown to fit the data very well (r 2 = 0.9505 to 0.9991) and could be used to accurately predict growth rates. The quadratic polynomial model was validated, and the predicted growth rate values were in good agreement with the experimental values. The polynomial model was found to be an appropriate secondary model for growth rate (GR) and lag time (LT) based on the correlation of determination (r 2 = 0.9899 for GR, 0.9782 for LT), bias factor (Bf = 1.006 for GR, 0.992 for LT), and accuracy factor (Af = 1.024 for GR, 1.011 for LT). Thus, this model holds great promise for use in predicting the growth of B. cereus in fresh wet noodles using only the bacterial concentration, an important contribution to the manufacturing of safe products.

Document Type: Research Article


Affiliations: 1: Department of Food Science and Technology, Chung-Ang University, Korea 72-1 Nae-ri, Daeduk-myun, Ansung, Gyunggido 456-756, Republic of Korea 2: Department of Food Science and Technology, Chung-Ang University, Korea 72-1 Nae-ri, Daeduk-myun, Ansung, Gyunggido 456-756, Republic of Korea.

Publication date: April 1, 2011

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more
Real Time Web Analytics