Skip to main content

Thermal Inactivation of Heat-Shocked Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in Dairy Compost

Buy Article:

$37.00 plus tax (Refund Policy)


Thermal resistance of heat-shocked Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes was compared with that of non–heat-shocked (control) strains in finished dairy compost. A three-strain mixture of each pathogen was heat shocked at 47.5°C for 1 h and inoculated into the compost at a final concentration of 107 CFU/g. The inoculated compost was placed inside an environmental chamber set at 50, 55, or 60°C with humidity at ca. 70%. The heat-shocked E. coli O157:H7, Salmonella, and L. monocytogenes survived better (P < 0.05) at 50°C, with reductions of 2.7, 3.2, and 3.9 log CFU/g within 4 h compared with reductions of 3.6, 4.5, and 5.1 log CFU/g, respectively, in control cultures. The heat-shocked cultures of E. coli O157:H7, Salmonella, and L. monocytogenes had 1.2-, 1.9-, and 2.3-log reductions, respectively, within 1 h at 55°C, whereas the corresponding control cultures had 4-, 5.6-, and 4.8-log reductions, respectively. At 60°C, a rapid population reduction was observed during the come-up time of 14 min in control cultures of E. coli O157:H7, Salmonella, and L. monocytogenes with 4.9-, 4.8-, and 2.3-log reductions, respectively, compared with 2.6-, 2.4-, 1.7-log reductions, respectively, in heat-shocked cultures. L. monocytogenes survival curves for all three temperatures had extensive tailing. The double Weibull distribution model was a good fit for the survival curves of pathogens, with differences in the shape parameter of heat-shocked and control cultures. Our results suggest that the heat-shocked pathogens may have extended survival at lethal temperatures attained during the composting process.

Document Type: Research Article

Affiliations: 1: Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA 2: Department of Food Science & Human Nutrition, Clemson University, Clemson, South Carolina 29634, USA 3: School of Computing, Clemson University, Clemson, South Carolina 29634, USA

Publication date: September 1, 2010

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more