Skip to main content

Infrequent Internalization of Escherichia coli O157:H7 into Field-Grown Leafy Greens

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

Several sources of contamination of fresh produce by Escherichia coli O157:H7 (O157) have been identified and include contaminated irrigation water and improperly composted animal waste; however, field studies evaluating the potential for internalization of O157 into leafy greens from these sources have not been conducted. Irrigation water inoculated with green fluorescent plasmid–labeled Shiga toxin–negative strains (50 ml of 102, 104, or 106 CFU of O157 per ml) was applied to soil at the base of spinach plants of different maturities in one field trial. In a second trial, contaminated compost (1.8 kg of 103 or 105 CFU of O157 per g) was applied to field plots (0.25 by 3.0 m) prior to transplantation of spinach, lettuce, or parsley plants. E. coli O157:H7 persisted in the soil up to harvest (day 76 posttransplantation) following application of contaminated irrigation water; however, internalized O157 was not detected in any spinach leaves or in roots exposed to O157 during the early or late growing season. Internalized O157 was detected in root samples collected 7 days after plants were contaminated in mid-season, with 5 of 30 samples testing positive for O157 by enrichment; however, O157 was not detected by enrichment in surface-disinfected roots on days 14 or 22. Roots and leaves from transplanted spinach, lettuce, and parsley did not internalize O157 for up to 50 days in the second trial. These results indicate that internalization of O157 via plant roots in the field is rare and when it does occur, O157 does not persist 7 days later.

Document Type: Research Article

Affiliations: 1: Center for Food Safety, Department of Food Science and Technology, 1109 Experiment Street, University of Georgia, Griffin, Georgia 30223, USA. mericks@uga.edu 2: Center for Food Safety, Department of Food Science and Technology, 1109 Experiment Street, University of Georgia, Griffin, Georgia 30223, USA 3: Department of Horticulture, University of Georgia, Tifton, Georgia 31793, USA 4: National Institute of Microbial Forensics and Food & Agricultural Biosecurity, Oklahoma State University, Stillwater, Oklahoma 74078, USA

Publication date: 2010-03-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more