If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Transfer of Escherichia coli O157:H7 from Soil, Water, and Manure Contaminated with Low Numbers of the Pathogen to Lettuce Plants

$37.00 plus tax (Refund Policy)

Buy Article:


The sources of contamination of leafy greens remain unclear, but it is evident that contaminated water, soil amendments, and wildlife likely contribute. The objective of the present study was to determine transfer of low numbers of Escherichia coli O157:H7 from soil, manure-amended soil, and water to growing lettuce plants. Lettuce plants, young (12 days of age) or mature (30 days of age), were grown in soil, manure-amended soil, or irrigated with water containing 101, 102, 103, or 104 CFU E. coli O157:H7 per g or ml. Harvested plants were processed to determine whether E. coli O157:H7 was associated with the entire plant or within internal locations. Young plants (12 days) were harvested at 1, 10, 20, and 30 days postexposure. No samples were positive for E. coli O157:H7 after direct plating of serial dilutions. Enrichment of all samples from young plants exposed to contaminated soil, manure-amended soil, and irrigation water demonstrated that approximately 21% (113 of 552) of plants were positive for E. coli O157:H7. Approximately 30% (36 of 120) of the mature plants initially irrigated with or grown in contaminated soil (including manure-amended soil) for 15 days were positive for E. coli O157:H7. Based on sterilization of surface tissue, E. coli O157:H7 was in protected locations of lettuce tissue. The results suggest that lettuce exposed to, and grown in the presence of, low numbers of E. coli O157:H7 may become contaminated and thus present a human health risk.

Document Type: Research Article

Affiliations: 1: Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, USA 2: Department of Food Science, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, New Jersey 08901-8520, USA;, Email: matthews@aesop.rutgers.edu

Publication date: November 1, 2009

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more