If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Thermal Inactivation Kinetics for Salmonella Enteritidis PT30 on Almonds Subjected to Moist-Air Convection Heating

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

A traditional thermal inactivation kinetic model (D- and z-value) was modified to account for the effect of process humidity on thermal inactivation of Salmonella Enteritidis PT30 on the surface of almonds subjected to moist-air heating. Raw almonds were surface inoculated to ∼108 CFU/g and subjected to moist-air heating in a computer-controlled laboratory-scale convection oven. Time-temperature data were collected for 125 conditions (five dry bulb temperatures, 121 to 232°C; five process humidity levels, 5 to 90% moisture by volume; and five process durations). Moisture status at the surface of the almond, rather than the humidity of the bulk air, was a primary factor controlling the rate of inactivation; therefore, the D-value could not be a simple function of process temperature. Instead, the traditional D- and z-value model was modified to account for the dynamic water status at the surface of the product under humid heating conditions. The modified model needs only the dew point temperature of the processing air and dynamic surface temperature history of the almonds during moist-air heating. The modified model was more robust and accurate than the traditional model. The accuracy of the modified model was improved by 32 to 44% (in terms of the root mean squared error [RMSE] for the model fit) when compared with the traditional model in all moist-air heating conditions. Also, the prediction error of the modified model (RMSE = 1.33 log reductions) against an independent validation data set was approximately one-half that of the traditional model (RMSE = 2.56 log reduction) in the humidity range of 5 to 90% moisture by volume.

Document Type: Research Article

Affiliations: 1: Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA 2: Food Science, Cornell University, Ithaca, New York 14853, USA

Publication date: August 1, 2009

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more