Theil Error Splitting Method for Selecting the "Best Model" in Microbial Inactivation Studies

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Escherichia coli K-12 was grown under unbuffered, buffered, and starving environmental conditions and then subjected to isothermal inactivation at 58°C for up to 30 min. Survival versus time data were used to evaluate three models reported as suitable for the prediction of microbial inactivation by thermal means. The error splitting method proposed by Theil was used to divide the average squared difference between each observed and predicted datum into three orthogonal error sources: bias, regression, and random error. The method is based on the hypothesis that if the model is accurate, the overall average predicted and observed values should be the same and a plot of observed versus predicted inactivation values should have a slope of 1. The bias fixed error term quantifies the overall average difference between predicted and observed inactivation values. The regression fixed error term quantifies the difference between observed and predicted values near the end of the predictive region, where shoulders and tails may occur. The random error term quantifies the random variability of the predicted versus observed inactivation values. Statistical tests were proposed to determine the significance of each fixed error term and the normality of the random error source. The method was used to discuss the goodness of fit for the three models for Escherichia coli. The best model was the one that minimized total residual error, maximized random error sources (i.e., fixed error terms are not significant), and maximized the coefficient of correlation between observed and predicted inactivation values.

Document Type: Research Article

Affiliations: 1: Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, Tennessee 37996, USA 2: Department of Food Science and Technology, University of Tennessee, 2605 River Drive, Knoxville, Tennessee 37996, USA; Grocery Manufacturers Association, 1350 "I" Street N.W., Washington, DC 20005, USA

Publication date: April 1, 2009

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more