Skip to main content

Effects of Flash Freezing, Followed by Frozen Storage, on Reducing Vibrio parahaemolyticus in Pacific Raw Oysters (Crassostrea gigas)

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


This study investigated the effects of flash freezing, followed by frozen storage, on reducing Vibrio parahaemolyticus in Pacific raw oysters. Raw Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus at a total level of approximately 3.5 × 105 most probable number (MPN) per gram. Inoculated oysters were subjected to an ultralow flash-freezing process (−95.5°C for 12 min) and stored at −10, −20, and −30°C for 6 months. Populations of V. parahaemolyticus in the oysters declined slightly by 0.22 log MPN/g after the freezing process. Subsequent storage of frozen oysters at −10, −20, and −30°C resulted in considerable reductions of V. parahaemolyticus in the oysters. Storing oysters at −10°C was more effective in inactivating V. parahaemolyticus than was storage at −20 or −30°C. Populations of V. parahaemolyticus in the oysters declined by 2.45, 1.71, and 1.45 log MPN/g after 1 month of storage at −10, −20, and −30°C, respectively, and continued to decline during the storage. The levels of V. parahaemolyticus in oysters were reduced by 4.55, 4.13, and 2.53 log MPN/g after 6 months of storage at −10, −20, and −30°C, respectively. Three process validations, each separated by 1 week and conducted according to the National Shellfish Sanitation Program's postharvest processing validation–verification interim guidance for Vibrio vulnificus and Vibrio parahaemolyticus, confirmed that a process of flash freezing, followed by storage at −21 ±2°C for 5 months, was capable of achieving greater than 3.52-log (MPN/g) reductions of V. parahaemolyticus in half-shell Pacific oysters.

Document Type: Research Article

Affiliations: 1: College of Food Science and Technology, Shanghai Ocean University, Shanghai, 200090, People's Republic of China 2: Seafood Research and Education Center, Oregon State University, Astoria, Oregon 97103, USA

Publication date:

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more