Skip to main content

Translocation of Surface-Inoculated Escherichia coli O157:H7 into Beef Subprimals following Blade Tenderization

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

In phase I, beef subprimals were inoculated on the lean side with ca. 0.5 to 3.5 log CFU/g of a rifampin-resistant (rifr) cocktail of Escherichia coli O157:H7 and passed once, lean side up, through a mechanical blade tenderizer. Inoculated subprimals that were not tenderized served as controls. Ten core samples were removed from each subprimal and cut into six consecutive segments: segments 1 to 4 comprised the top 4 cm and segments 5 and 6 the deepest 4 cm. Levels of E. coli O157:H7 recovered from segment 1 of control subprimals when inoculated with ca. 0.5, 1.5, 2.5, or 3.5 log CFU/g were 0.6, 1.46, 2.5, and 3.19 log CFU/g, respectively. Following tenderization, pathogen levels recovered from segment 1 inoculated with 0.5 to 3.5 log CFU/g were 0.22, 1.06, 2.04, and 2.7 log CFU/g, respectively. Levels recovered in segment 2 were 7- to 34-fold lower than levels recovered from segment 1. Next, in phase II, the translocation of ca. 4 log CFU of the pathogen per g was assessed for lean-side–inoculated subprimals passed either once (LS) or twice (LD) through the tenderizer and for fatside–inoculated subprimals passed either once (FS) or twice (FD) through the tenderizer. Levels in segment 1 for LS, LD, FS, and FD tenderized subprimals were 3.63, 3.52, 2.85, and 3.55 log CFU/g, respectively. The levels recovered in segment 2 were 14- to 50-fold lower than levels recovered in segment 1 for LS, LD, FS, and FD subprimals. Thus, blade tenderization transfers E. coli O157:H7 primarily into the topmost 1 cm, but also into the deeper tissues of beef subprimals.

Document Type: Research Article

Affiliations: 1: U. S. Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038 2: Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas, 66506 3: Department of Food Science, University of Nebraska, Lincoln, Nebraska 68583, USA

Publication date: November 1, 2008

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
iafp/jfp/2008/00000071/00000011/art00004
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more