Skip to main content

Thermal Inactivation of Escherichia coli O157:H7 in Beef Treated with Marination and Tenderization Ingredients

Buy Article:

$37.00 plus tax (Refund Policy)


Internalization of Escherichia coli O157:H7 in nonintact beef products during mechanical tenderization or during injection of marination and tenderization ingredients is of concern if such products are undercooked. This study tested organic acids (0.2% citric acid and 0.3% acetic acid), potassium and calcium salts (1.8% potassium lactate, 0.63% calcium lactate, 0.86% calcium ascorbate, and 0.23% calcium chloride), and sodium chloride (2.5%) for their influence on thermal destruction of E. coli O157:H7 in ground beef serving as a model system. Ground beef batches (700 g; 5% fat) were mixed with equal volumes (22 ml) of each treatment solution or distilled water and portions (30 g) of treated ground beef were extruded in test tubes (2.5 by 10 cm). A five-strain mixture of E. coli O157:H7 (0.3 ml; 7 log CFU/g) was introduced at the center of the sample with a pipette. After overnight storage (4°C), simulating product marination, samples were heated to 60 or 65°C internal temperature, simulating rare and medium rare doneness of beef, in a circulating water bath. At 65°C, treatments with citric and acetic acid showed greater (P < 0.05) reduction (4 to 5 log CFU/g) of E. coli O157:H7 than all the other ingredients and the control (3 to 4 log CFU/g). Sodium chloride reduced weight losses (16 to 18% compared with 20 to 27% by citric or acetic acid) and resulted in a 4-log reduction in counts during cooking to 65°C. Ingredients such as citric or acetic acid may improve thermal inactivation of E. coli O157:H7 internalized in nonintact beef products, while sodium chloride may reduce cooking losses in such products.

Document Type: Research Article

Affiliations: Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523-1171, USA

Publication date: July 1, 2008

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more