Skip to main content

Contributions of Two-Component Regulatory Systems, Alternative Factors, and Negative Regulators to Listeria monocytogenes Cold Adaptation and Cold Growth

Buy Article:

$37.00 plus tax (Refund Policy)


The ability of Listeria monocytogenes to grow at refrigeration temperatures is critical for transmission of this foodborne pathogen. We evaluated the contributions of different transcriptional regulators and two-component regulatory systems to L. monocytogenes cold adaptation and cold growth. L. monocytogenes parent strain 10403S and selected isogenic null mutants in genes encoding four alternative factors (sigB, sigH, sigC, and sigL), two regulators of σB (rsbT and rsbV), two negative regulators (ctsR and hrcA), and 15 two-component response regulators were grown in brain heart infusion broth at 4°C with (i) a high-concentration starting inoculum (108 CFU/ml), (ii) a low-concentration starting inoculum (102 CFU/ml), and (iii) a high-concentration starting inoculum of cold-adapted cells. With a starting inoculum of 108 CFU/ml, null mutants in genes encoding selected alternative σ factors (ΔsigH, ΔsigC, and ΔsigL), a negative regulator (ΔctsR), regulators of σBrsbT and ΔrsbV), and selected two-component response regulators (ΔlisR, Δlmo1172, and Δlmo1060) had significantly reduced growth (P < 0.05) compared with the parent strain after 12 days at 4°C. The growth defect for ΔsigL was limited and was not confirmed by optical density (OD600) measurement data. With a starting inoculum of 102 CFU/ml and after monitoring growth at 4°C over 84 days, only the ΔctsR strain had a consistent but limited growth defect; the other mutant strains had either no growth defects or limited growth defects apparent at only one or two of the nine sampling points evaluated during the 84-day growth period (ΔsigB, ΔsigC, and Δlmo1172). With a 108 CFU/ml starting inoculum of cold-adapted cells, none of the mutant strains that had a growth defect when inoculation was performed with cells pregrown at 37°C had reduced growth as compared with the parent strain after 12 days at 4°C, suggesting a specific defect in the ability of these mutant strains to adapt to 4°C after growth at 37°C. Our data indicate (i) selected factors and two-component regulators may contribute to cold adaptation even though two-component regulatory systems, alternative factors, and the negative regulators CtsR and HrcA appear to have limited contributions to L. monocytogenes growth at 4°C in rich media, and (ii) inoculum concentration and pregrowth conditions affect the L. monocytogenes cold-growth phenotype.

Document Type: Research Article

Affiliations: Department of Food Science, Cornell University, Ithaca, New York 14853, USA

Publication date: February 1, 2008

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more