Skip to main content

Effect of Xylitol on Adhesion of Salmonella Typhimurium and Escherichia coli O157:H7 to Beef Carcass Surfaces

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

Effects of 10% xylitol (a five-carbon sugar alcohol) on adhesion of Escherichia coli O157:H7 and Salmonella Typhimurium to meat surfaces were examined with three approaches. First, beef outside round was inoculated with rifampin-resistant E. coli O157:H7 and Salmonella Typhimurium dispersed in xylitol or peptone solution. Samples were rinsed with water or not rinsed in a 2 × 2 factorial arrangement. No interaction existed between inoculum and rinsing treatments (P > 0.84). Incubation in xylitol had minimal impact on pathogen adhesion (P < 0.76); however, rinsing reduced pathogen cell counts (P < 0.01). Second, meat samples were treated with water, xylitol, or no rinse; inoculated with pathogens dispersed in peptone solution (8.6 log CFU/ml for each pathogen); and then treated with water, xylitol, or no rinse in a 3 × 3 factorial arrangement. No interactions were observed (P > 0.50). Postinoculation rinsing reduced pathogen loads (P < 0.01) without difference between water and xylitol (P > 0.64). Third, carcass surfaces inoculated with pathogens (5.5 log CFU/cm2) were treated with 35°C water wash, 2.5% L-lactic acid spray, 10% xylitol spray, lactic acid plus xylitol, or hot water plus xylitol. Lactic acid treatments reduced Salmonella Typhimurium at 0 h (P < 0.01) and 24 h (P < 0.02). Hot water treatments tended to reduce Salmonella Typhimurium at 0 h (P < 0.07). Xylitol did not reduce pathogens (P > 0.62) or increase effectiveness of other treatments. Xylitol does not influence E. coli O157:H7 and Salmonella Typhimurium adhesion to meat surfaces.

Document Type: Research Article

Affiliations: Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, Texas 77843-2471, USA

Publication date: February 1, 2008

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites
iafp/jfp/2008/00000071/00000002/art00025
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more