Skip to main content

Effect of Salt, Smoke Compound, and Storage Temperature on the Growth of Listeria monocytogenes in Simulated Smoked Salmon

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

Smoked salmon can be contaminated with Listeria monocytogenes. It is important to identify the factors that are capable of controlling the growth of L. monocytogenes in smoked salmon so that control measures can be developed. The objective of this study was to determine the effect of salt, a smoke compound, storage temperature, and their interactions on L. monocytogenes in simulated smoked salmon. A six-strain mixture of L. monocytogenes (102 to 103 CFU/g) was inoculated into minced, cooked salmon containing 0 to 10% NaCl and 0 to 0.4% liquid smoke (0 to 34 ppm of phenol), and the samples were stored at temperatures from 0 to 25°C. Lag-phase duration (LPD; hour), growth rate (GR; log CFU per hour), and maximum population density (MPD; log CFU per gram) of L. monocytogenes in salmon, as affected by the concentrations of salt and phenol, storage temperature, and their interactions, were analyzed. Results showed that L. monocytogenes was able to grow in salmon containing the concentrations of salt and phenol commonly found in smoked salmon at the prevailing storage temperatures. The growth of L. monocytogenes was affected significantly (P < 0.05) by salt, phenol, storage temperature, and their interactions. As expected, higher concentrations of salt or lower storage temperatures extended the LPD and reduced the GR. Higher concentrations of phenol extended the LPD of L. monocytogenes, particularly at lower storage temperatures. However, its effect on reducing the GR of L. monocytogenes was observed only at higher salt concentrations (>6%) at refrigerated and mild abuse temperatures (<10°C). The MPD, which generally reached 7 to 8 log CFU/g in salmon that supported L. monocytogenes growth, was not affected by the salt, phenol, and storage temperature. Two models were developed to describe the LPD and GR of L. monocytogenes in salmon containing 0 to 8% salt, 0 to 34 ppm of phenol, and storage temperatures of 4 to 25°C. The data and models obtained from this study would be useful for estimating the behavior of L. monocytogenes in smoked salmon.

Document Type: Research Article

Affiliations: Microbial Food Safety Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA;, Tel: +215-233-6416, Fax: -215-233-6581, Email: andy.hwang@ars.usda.gov

Publication date: October 1, 2007

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more