Comparison of the Molecular Genotypes of Escherichia coli O157:H7 from the Hides of Beef Cattle in Different Regions of North America

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Cattle hides become contaminated with Escherichia coli O157:H7 via pathogen transmission in the feedlot, during transport, and while in the lairage environment at the processing facility, and the bacteria can be transferred to beef carcasses during processing. Several studies have shown that E. coli O157:H7 strains possessing indistinguishable restriction digest patterns (RDPs) can be isolated from distant locations. Most of these studies, however, examined RDPs from strains isolated within a single region of the United States or Canada. The experiment described in the present study was designed to identify the molecular genotypes of E. coli O157:H7 isolates from beef cattle hides in nine major cattle-producing regions of North America. Prevalence for E. coli O157:H7 in beef cattle hide samples ranged from 9 to 85%. Pulsed-field gel electrophoresis (PFGE) analysis of XbaI-digested genomic DNA from 1,193 E. coli O157:H7 isolates resulted in 277 unique RDPs. Of the 277 unique XbaI RDPs, 54 contained isolates collected from multiple regions. After two subsequent rounds of PFGE analysis (BlnI and SpeI), there were still many isolates (n = 154) that could not be distinguished from others, even though they were collected from different regions separated by large geographical distances. On multiple occasions, strains isolated from cattle hides in Canada had RDPs that were indistinguishable after three enzyme digestions from cattle hide isolates collected in Kansas and Nebraska. This information clearly shows that strains with indistinguishable RDPs originate from multiple sources that can be separated by large distances and that this should be taken into account when the source tracking of isolates is based on PFGE.

Document Type: Research Article

Affiliations: 1: U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA 2: U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933-0166, USA; U.S. Department of Agriculture, Agricultural Research Service, Animal & Natural Resource Institute, Building 201, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA

Publication date: July 1, 2007

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more