Inhibition of Germination and Outgrowth of Clostridium perfringens Spores by Lactic Acid Salts during Cooling of Injected Turkey

Authors: Velugoti, Padmanabha Reddy1; Bohra, Lalit K.1; Juneja, Vijay K.2; Thippareddi, Harshavardhan1

Source: Journal of Food Protection®, Number 4, April 2007, pp. 820-1053 , pp. 923-929(7)

Publisher: International Association for Food Protection

Buy & download fulltext article:


Price: $37.00 plus tax (Refund Policy)


Inhibition of Clostridium perfringens spore germination and outgrowth by lactic acid salts (calcium, potassium, and sodium) during exponential cooling of injected turkey product was evaluated. Injected turkey samples containing calcium lactate, potassium lactate, or sodium lactate (1.0, 2.0, 3.0, or 4.8% [w/w]), along with a control (product without lactate), were inoculated with a three-strain cocktail of C. perfringens spores to achieve a final spore population of 2.5 to 3.0 log CFU/g. The inoculated product was heat treated and exponentially cooled from 54.5 to 7.2°C within 21, 18, 15, 12, 9, or 6.5 h. Cooling of injected turkey (containing no antimicrobials) resulted in C. perfringens germination and an outgrowth of 0.5, 2.4, 3.4, 5.1, 5.8, and 5.8 log CFU/g when exponentially cooled from 54.4 to 7.2°C in 6.5, 12, 15, 18, and 21 h, respectively. The incorporation of antimicrobials (lactates), regardless of the type (Ca, Na, or K salts), inhibited the germination and outgrowth of C. perfringens spores at all the concentrations evaluated (1.0, 2.0, 3.0, and 4.8%) compared to the injected turkey without acetate (control). Increasing the concentrations of the antimicrobials resulted in a greater inhibition of the spore germination and outgrowth in the products. In general, calcium lactate was more effective in inhibiting the germination and outgrowth of C. perfringens spores at ≥1.0% concentration than were sodium and potassium lactates. Incorporation of these antimicrobials in cooked, ready-to-eat turkey products can provide additional protection in controlling the germination and outgrowth of C. perfringens spores during cooling (stabilization).

Document Type: Research Article

Affiliations: 1: Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68583, USA 2: Food Safety Intervention Technologies Research Unit, Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA

Publication date: April 1, 2007

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: or Web site:
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page