Skip to main content

Evaluation of the Transfer of Listeria monocytogenes from Stainless Steel and High-Density Polyethylene to Bologna and American Cheese

Buy Article:

$37.00 plus tax (Refund Policy)


The objective of this study was to determine the factors involved in the transfer of Listeria monocytogenes from surfaces to foods. We evaluated the influence of surface type (stainless steel and high-density polyethylene), inoculation method (biofilm growth and attached cells), hydration level (visibly dry and wet), and food type (bologna and American cheese). Each experiment included all 16 combinations and was repeated 11 times. A four-strain cocktail of L. monocytogenes was used to inoculate stainless steel and high-density polyethylene either as growing biofilms or attached cells. Slides were placed on a universal testing machine and brought into contact with food at a constant pressure (45 kPa) and time (30 s). Food slices were blended, the number of transferred cells was determined by plating, and the efficiency of transfer (EOT) was calculated. The results strongly suggest that stainless steel surfaces transferred more L. monocytogenes to foods than did polyethylene (P = 0.05). Independent of the surface, biofilms tended to transfer more L. monocytogenes to foods (EOT = 0.57) than did attached cells (EOT = 0.16). Among foods, L. monocytogenes was transferred to bologna more easily than to cheese (P < 0.05). The impact of hydration on transfer was significantly higher for dried biofilms growing on stainless steel (P < 0.05). No significant differences for hydration were seen under other conditions (P > 0.05). We hypothesize that drying weakens cell-to-cell interactions in biofilms and cell-to-surface interactions of biofilms and thus allows increased transfer of cells to food products.

Document Type: Research Article

Affiliations: Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massaschusetts 01003, USA

Publication date: March 1, 2007

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more