Skip to main content

Evaluation of a Tissue Culture–Based Approach for Differentiating between Virulent and Avirulent Vibrio parahaemolyticus Strains Based on Cytotoxicity

Buy Article:

$37.00 plus tax (Refund Policy)


The ability of only a subset of Vibrio parahaemolyticus strains to cause human infection underscores the need for an analytical method that can effectively differentiate between pathogenic strains and those that do not cause disease. We tested the feasibility of a tissue culture–based assay to determine whether clinical isolates could be differentiated from nonclinical isolates based on relative isolate cytopathogenicity. To screen for cytotoxic capability, we measured relative extracellular lactate dehydrogenase as an indicator of host cell damage in five different mammalian cell lines in the presence of V. parahaemolyticus. Isolates originating from clinical sources exhibited 15.5 to 59.3% relative cytotoxicity, whereas those originating from food sources exhibited 4.4 to 54.9% relative cytotoxicity. In the presence of ∼1.2 × 106 cells, cytotoxicity was 1.6- to 3.5-fold higher (P < 0.05) for clinical isolates than for nonclinical isolates in L2, Henle 407, and Caco-2 cell lines. V. parahaemolyticus serotype O3:K6 clinical isolates had 1.6- to 2.1-fold higher cytotoxicity than did the non-O3:K6 clinical isolates, with significantly higher cytotoxicity in HeLa, J774A.1, and Henle 407 cells than in L2 and Caco-2 cells. Because V. parahaemolyticus often is found in oysters, the effect of the presence of an oyster matrix on assay efficacy was also tested with L2 cells. The cytotoxicity elicited by a highly cytotoxic V. parahaemolyticus isolate was not affected by the presence of oyster tissue, suggesting that an oyster matrix will not interfere with assay sensitivity. In the present format, this assay can detect the presence of >105 cells of a virulent V. parahaemolyticus strain in an oyster matrix.

Document Type: Research Article

Affiliations: 1: Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407, USA 2: Department of Food Science, Cornell University, Ithaca, New York 14853, USA

Publication date: February 1, 2007

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more