Skip to main content

Effects of Cell Surface Charge and Hydrophobicity on Attachment of 16 Salmonella Serovars to Cantaloupe Rind and Decontamination with Sanitizers

Buy Article:

$37.00 plus tax (Refund Policy)


Adherence of bacteria to cantaloupe rind is favored by surface irregularities such as roughness, crevices, and pits, thus reducing the ability of washing or sanitizer treatments to remove or inactivate attached cells. In this study, we compared the surface charge and hydrophobicity of two cantaloupe-related outbreak strains of Salmonella Poona (RM2350 and G-91-1595) to those of 14 additional Salmonella strains using electrostatic and hydrophobic interaction chromatography. The relative abilities of the 16 strains to attach to cantaloupe surfaces and resist removal by washing with water, chlorine (200 ppm), or hydrogen peroxide (2.5%) for 5 min after a storage period of up to 7 days at 5 to 20°C also were determined. Whole cantaloupes were inoculated with each pathogen at 8.36 log CFU/ml, dried for 1 h inside a biosafety cabinet, stored, and then subjected to the washing treatments. Only the positive surface charge of the two cantaloupe-related strains of Salmonella Poona was significantly higher (P < 0.05) than that of the other strains. Initial bacterial attachment to cantaloupe surfaces ranged from 3.68 to 4.56 log CFU/cm2 (highest values for Salmonella Michigan, Newport, Oranienburg, and Mbandaka). The average percentage of the total bacterial population strongly attached to the cantaloupe surface for the Salmonella serovars studied ranged from 0.893 to 0.946 at 5°C and from 0.987 to 0.999 at 25°C. Washing inoculated melons with water did not produce a significant reduction in the concentration of the pathogens (P > 0.05). Chlorine and hydrogen peroxide treatments caused an average 3-log reduction when applied 20 to 40 min postinoculation. However, sanitizer treatments applied 60 min or more postinoculation were less effective (approximately 2.5-log reduction). No significant differences were noted in sanitizer efficacy against the individual strains (P > 0.05). The two cantaloupe-related outbreak Salmonella Poona strains did not significantly differ from the other Salmonella strains tested in negative cell surface charge or hydrophobicity, were not more effective in attaching to whole melon surfaces, and were not more resistant to the various washing treatments when present on rinds.

Document Type: Research Article

Affiliations: U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA

Publication date: August 1, 2006

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more