Skip to main content

Cold Stress Tolerance of Listeria monocytogenes: A Review of Molecular Adaptive Mechanisms and Food Safety Implications

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Abstract:

The foodborne pathogen Listeria monocytogenes has many physiological adaptations that enable survival under a wide range of environmental conditions. The microbes overcome various types of stress, including the cold stress associated with low temperatures in food-production and storage environments. Cold stress adaptation mechanisms are therefore an important attribute of L. monocytogenes, enabling these food pathogens to survive and proliferate to reach minimal infectious levels on refrigerated foods. This phenomenon is a function of many molecular adaptation mechanisms. Therefore, an improved understanding of how cold stress is sensed and adaptation measures implemented by L. monocytogenes may facilitate the development of better ways of controlling these pathogens in food and related environments. Research over the past few years has highlighted some of the molecular aspects of cellular mechanisms behind cold stress adaptation in L. monocytogenes. This review provides an overview of the molecular and physiological constraints of cold stress and discusses the various cellular cold stress response mechanisms in L. monocytogenes, as well as their implications for food safety.

Document Type: Review Article

Affiliations: Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, CH-8057 Zurich, Switzerland

Publication date:

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more