If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Combined Treatment of High Pressure and Heat on Killing Spores of Alicyclobacillus acidoterrestris in Apple Juice Concentrate

$37.00 plus tax (Refund Policy)

Buy Article:


Alicyclobacillus acidoterrestris, a thermoacidophilic and spore-forming bacterium, has been isolated from spoiled acidic juices and is considered to be one of the important target microorganisms in quality control of acidic canned foods. Combined high pressure and heat treatment showed an effectiveness to control A. acidoterrestris spores. However, the effectiveness of the combined treatment may change upon the apple juice concentration. Therefore, the objective of this study was to evaluate different levels of apple juice concentrate for reduction of Alicyclobacillus spores by high pressure and heat. Spores of A. acidoterrestris were inoculated into three different concentrations of apple juice (17.5, 35, and 70° Brix), and subjected to three high-pressure treatments (207, 414, and 621 MPa) at four different temperatures (22, 45, 71, and 90°C). High-pressure treatment (207, 414, and 621 MPa) at 22°C did not reduce the level of spores regardless of the apple juice concentration (P > 0.05). In diluted apple juice (17.5° Brix), the combined treatment of high pressure and heat resulted in spore reductions of about 2 log at 45°C, and more than 5 log at higher temperatures (71 and 90°C) in a high-pressure and temperature-dependent manner. For apple juice with a higher concentration (30° Brix), high-pressure treatment showed no effect at 45°C but resulted in about 2 and 4 log reduction at 71 and 90°C, respectively. However, for apple juice concentrate (70° Brix), treatment with heat or high pressure alone, or their combinations showed no inactivation against spores of A. acidoterrestris. It is likely that differences in the water availability explain the greater resistance of spores to high-pressure inactivation in the juice concentrates than in diluted juices. Our results demonstrate that the effect of high pressure combined with heat against spores of A. acidoterrestris was highly dependent on the apple juice concentration.

Document Type: Research Article

Affiliations: 1: Department of Food Science and Human Nutrition, Washington State University, Pullman, Washington 99164-6376, USA 2: Department of Biological Systems Engineering, Washington State University, Pullman, Washington 99164-6120, USA

Publication date: May 1, 2006

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more