If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Pediococcus parvulus gtf Gene Encoding the GTF Glycosyltransferase and Its Application for Specific PCR Detection of β-D-Glucan–Producing Bacteria in Foods and Beverages

$37.00 plus tax (Refund Policy)

Buy Article:


Exopolysaccharide production by lactic acid bacteria is beneficial in the dairy and oat-based food industries and is used to improve the texture of the fermented products. However, β-D-glucan–producing bacteria are considered spoilage microorganisms in alcoholic beverages because their secreted exopolysaccharides alter the viscosity of cider, wine, and beer, rendering them unpalatable. The plasmidic glycosyltransferase (gtf) gene of the Pediococcus parvulus 2.6 strain isolated from ropy cider has been cloned and sequenced, and its GTF product was functionally expressed in Streptococcus pneumoniae. The GTF protein, which has glycosyltransferase activity, belongs to the COG1215 membrane-bound glycosyltransferase family, and agglutination tests revealed that the enzyme enables S. pneumoniae to synthesize β-D-glucan. PCR amplification and Southern blot hybridization showed that the gtf gene is also present at different genomic locations in the β-D-glucan producers Lactobacillus diolivorans G77 and Oenococcus oeni I4 strains, also isolated from ropy cider. A PCR assay has been developed for the detection of exopolysaccharide-producing bacteria. Forward and reverse primers, included respectively in the coding sequences of the putative glycosyltransferase domain and the fifth trans-membrane segment of the GTF, were designed. Analysis of 76 ropy and nonropy lactic acid bacteria validated the method for specific detection of β-D-glucan homopolysaccharide producer Pediococcus, Lactobacillus, and Oenococcus strains. The limit of the assay in cider was 3 × 102 CFU/ml. This molecular method can be useful for the detection of ropy bacteria in cider before spoilage occurs, as well as for isolation of new exopolysaccharide-producing strains of industrial interest.

Document Type: Research Article

Affiliations: 1: Departamento de Estructura y Función de proteínas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain 2: Departamento de Quimica Aplicada, Facultad de Ciencias Quimicas, Box 1072, 20080 San Sebastian, Spain 3: Departamento de Biologia Molecular (Unidad Asociada al Centro de Investigaciones Biologicas, C.S.I.C.), Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain

Publication date: January 1, 2006

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more