Skip to main content

Internalization of Escherichia coli O157:H7 following Biological and Mechanical Disruption of Growing Spinach Plants

Buy Article:

$37.00 plus tax (Refund Policy)


The internalization and persistence of a bioluminescent Escherichia coli O157:H7 Ph1 was investigated in growing spinach plants that had been either biologically or mechanically damaged. In control (undamaged) plants cultivated in soil microcosms inoculated with E. coli O157:H7 Ph1, the bacterium was recovered from surface-sterilized root tissue but not from leaves. Mechanical disruption of the seminal root and root hairs of the plants did not result in the internalization of the pathogen into the aerial leaf tissue. When imprints of the root tissue were made on plates of tryptic soy agar plus ampicillin, no colonies of E. coli O157:H7 were observed around damaged tissue. The roots of growing plants were exposed to the northern root-knot nematode, Meloidogyne hapla, in the presence of E. coli O157:H7. Although this treatment caused knot formation on the roots, it did not enhance the internalization of the bacterium into the plant vascular system. Coinoculation of intact leaves with E. coli O157:H7 and the phytopathogen Pseudomonas syringae DC3000 resulted in localized necrosis, but the persistence of the human pathogen was not affected. The mechanical disruption of roots does not result in the internalization of E. coli O157:H7 into the aerial tissue of spinach, and there does not appear to be any effect of P. syringae in terms of enhancing the persistence of E. coli O157:H7 in spinach leaves.

Document Type: Research Article

Affiliations: 1: Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1 2: Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1; Canadian Research Institute for Food Safety, University of Guelph, Guelph, Ontario, Canada N1G 2W1 3: Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Publication date: December 1, 2005

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more