Skip to main content

Sampling Uncertainties for the Detection of Chemical Agents in Complex Food Matrices

Buy Article:

$37.00 plus tax (Refund Policy)


Using uncertainty associated with detection of aflatoxin in shelled corn as a model, the uncertainty associated with detecting chemical agents intentionally added to food products was evaluated. Accuracy and precision are two types of uncertainties generally associated with sampling plans. Sources of variability that affect precision were the primary focus of this investigation. Test procedures used to detect chemical agents generally include sampling, sample preparation, and analytical steps. The uncertainty of each step contributes to the total uncertainty of the test procedure. Using variance as a statistical measure of uncertainty, the variance associated with each step of the test procedure used to detect aflatoxin in shelled corn was determined for both low and high levels of contamination. For example, when using a 1-kg sample, Romer mill, 50-g subsample, and high-performance liquid chromatography to test a lot of shelled corn contaminated with aflatoxin at 10 ng/g, the total variance associated with the test procedure was 149.2 (coefficient of variation of 122.1%). The sampling, sample preparation, and analytical steps accounted for 83.0, 15.6, and 1.4% of the total variance, respectively. A variance of 149.2 suggests that repeated test results will vary from 0 to 33.9 ng/g. Using the same test procedure to detect aflatoxin at 10,000 ng/g, the total variance was 264,719 (coefficient of variation of 5.1%). The sampling, sample preparation, and analytical steps accounted for 41, 57, and 2% of the total variance, respectively. A variance of 264,719 suggests that repeated test results will vary from 8,992 to 11,008 ng/g. Foods contaminated at low levels reflect a situation in which a small percentage of particles is contaminated and sampling becomes the largest source of uncertainty. Large samples are required to overcome the ''needle-in-the-haystack'' problem. Aflatoxin is easier to detect and identify in foods intentionally contaminated at high levels than in foods with low levels of contamination because the relative standard deviation (coefficient of variation) decreases and the percentage of contaminated kernels increases with an increase in concentration.

Document Type: Research Article

Affiliations: Agricultural Research Service, U.S. Department of Agriculture, Box 7625, North Carolina State University, Raleigh, North Carolina 27695-7625, USA

Publication date: June 1, 2005

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more