Skip to main content

Effect of Milk Inoculation with Bacteriocin-Producing Lactic Acid Bacteria on a Lactobacillus helveticus Adjunct Cheese Culture

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.


The effect of eight strains of lactic acid bacteria (two strains of Enterococcus, one strain of Lactobacillus, and five strains of Lactococcus, which produce enterocin AS-48, enterocin 607, nisin A, nisin Z, plantaricin 684, lacticin 481, or nisin Z plus lacticin 481) on acid production and proteolytic activity of Lactobacillus helveticus LH 92 (a highly peptidolytic strain used as an adjunct in cheese making) was evaluated in mixed cultures in milk. Acid production by mixed cultures depended on the sensitivity of L. helveticus LH 92 to the different bacteriocins and on the acidification rates of bacteriocin-producing strains. Proteolysis values of mixed cultures were, in all cases, lower than those of L. helveticus LH 92 single culture (control). Cell-free aminopeptidase activity values after 9 h of incubation did not increase in the presence of enterocin producers or the nisin A producer, whereas in the presence of the nisin Z producer, cell-free aminopeptidase activity was, at most, 3.7-fold greater than the control value. In mixed cultures with the plantaricin producer, a progressive lysis of L. helveticus LH 92 took place, with cell-free aminopeptidase activity values after 9 h being, at most, 10.5-fold greater than the control value. The highest cell-free aminopeptidase activity values after 9 h were recorded in the presence of lacticin 481 producers, with the values being, at most, 25.1-fold greater than the control value. L. helveticus LH 92 was extremely sensitive to small variations in the concentration of the inoculum of the nisin Z plus lacticin 481 producer, with there being a narrow optimum for the release of intracellular aminopeptidases. Plantaricin and lacticin 481 producers seemed the most promising strains to be combined with L. helveticus LH 92 as lactic cultures for cheese manufacture, because of the accelerated release of intracellular aminopeptidases.

Document Type: Research Article

Affiliations: Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid, 28040 Spain

Publication date:

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more