If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Survival and Recovery of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on Lettuce and Parsley as Affected by Method of Inoculation, Time between Inoculation and Analysis, and Treatment with Chlorinated Water

$37.00 plus tax (Refund Policy)

Buy Article:


The effects of method for applying inoculum and of drying time after inoculation on survival and recovery of foodborne pathogens on iceberg lettuce and parsley were studied. Five-strain mixtures of Escherichia coli O157:H7, Salmonella, or Listeria monocytogenes were applied to lettuce and parsley by dip, spot, or spray inoculation methods. Inocula were dried for 2 h at 22°C or for 2 h at 22°C and then 22 h at 4°C before being treated with water (control) or chlorine (200 μg/ml). Significantly higher populations (CFU per lettuce or parsley sample) of E. coli O157:H7 and Salmonella (α = 0.05) were recovered from dip-inoculated produce than from spot- or spray-inoculated produce. This difference was attributed to larger numbers of cells adhering to lettuce and parsley subjected to dip inoculation. Populations of E. coli O157:H7 and Salmonella recovered from lettuce inoculated by spot and spray methods were not significantly different, but populations recovered from spot-inoculated parsley were significantly higher than those recovered from spray-inoculated parsley, even though the number of cells applied was the same. Significantly different numbers of L. monocytogenes were recovered from inoculated lettuce (dip > spray > spot); populations recovered from dip-inoculated parsley were significantly higher than those recovered from spot- or spray-inoculated parsley, which were not significantly different from each other. Populations of pathogens recovered from lettuce and parsley after drying inoculum for 2 h at 22°C were significantly higher than or equal to populations recovered after drying for 2 h at 22°C and then for 22 h at 4°C. Significant differences (water > chlorine) were observed in populations of all pathogens recovered from treated lettuce and parsley, regardless of inoculation method and drying time. It is recommended that spot inoculation with a drying time of 2 h at 22°C followed by 22 h at 4°C be used to determine the efficacy of chlorine and other sanitizers in killing foodborne pathogens on lettuce and parsley.


Document Type: Research Article

Affiliations: 1: Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797 2: Department of Food Science and Technology, One Shields Avenue, University of California, Davis, California 95616-8598, USA

Publication date: June 1, 2004

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more