Skip to main content

Detection and Fate of Bacillus anthracis (Sterne) Vegetative Cells and Spores Added to Bulk Tank Milk

Buy Article:

$37.00 plus tax (Refund Policy)


A preparation of Bacillus anthracis (Sterne strain) spores was used to evaluate commercially available reagents and portable equipment for detecting anthrax contamination by using real-time PCR and was used to assess the fate of spores added directly to bulk tank milk. The Ruggedized Advanced Pathogen Identification Device (RAPID) was employed to detect spores in raw milk down to a concentration of 2,500 spores per ml. Commercially available primers and probes developed to detect either the protective antigen gene or the lethal factor gene both provided easily read positive signals with the RAPID following extraction from milk with a commercially available DNA extraction kit. Nucleotide sequence analysis of the vrrA gene with the use of DNA extracted from spiked milk provided molecular data that readily identified the spores as B. anthracis with a 100% BLAST match to the Sterne and Ames strains and easily distinguished them from B. cereus. Physical-fate and thermal-stability studies demonstrated that spores and vegetative cells have a strong affinity for the cream fraction of whole milk. A single treatment at standard pasteurization temperatures, while 100% lethal to vegetative cells, had no effect on spore viability even 14 days after the treatment. Twenty-four hours after the first treatment, a second treatment at 72°C for 15 s reduced the viability of the population by ca. 99% but still did not kill all of the spores. From these studies, we conclude that standard pasteurization techniques for milk would have little effect on the viability of B. anthracis spores and that raw or pasteurized milk poses no obstacles to the rapid detection of the spores by molecular techniques.


Document Type: Short Communication

Affiliations: 1: Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, USDA Agricultural Research Service, Building 173, Room 102, BARC-East, Beltsville, Maryland 20705, USA 2: Environmental Microbial Safety Laboratory, Animal and Natural Resources Institute, USDA Agricultural Research Service, Building 173, Room 102, BARC-East, Beltsville, Maryland 20705, USA

Publication date: December 1, 2003

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more