If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Viability of Clostridium perfringens, Escherichia coli, and Listeria monocytogenes Surviving Mild Heat or Aqueous Ozone Treatment on Beef Followed by Heat, Alkali, or Salt Stress

$37.00 plus tax (Refund Policy)

Buy Article:


The threat of pathogen survival following ozone treatment of meat necessitates careful evaluation of the microorganisms surviving under such circumstances. The objective of this study was to determine whether sublethal aqueous ozone treatment (3 ppm of O3 for 5 min) of microorganisms on beef surfaces would result in increased or decreased survival with respect to subsequent heat, alkali, or NaCl stress. A mild heat treatment (55°C for 30 min) was used for comparison. Reductions in three-strain cocktails of Clostridium perfringens, Escherichia col O157:H7, and Listeria monocytogenes on beef following the heat treatment were 0.14, 0.77, and 1.47 log10 CFU/g, respectively, whereas reductions following ozone treatment were 1.28, 0.85, and 1.09 log10 CFU/g, respectively. C. perfringens cells exhibited elevated heat resistance at 60°C (D 60 [time at 60°C required to reduce the viable cell population by 1 log10 units or 90%] = 17.76 min) following heat treatment of beef (55°C for 30 min) but exhibited reduced viability at 60°C following ozone treatment (D 60 = 7.64 min) compared with the viability of untreated control cells (D 60 = 13.84 min). The D 60-values for L. monocytogenes and E. coli O157:H7 following heat and ozone exposures were not significantly different (P > 0.05). C. perfringens cells that survived ozone treatment did not exhibit increased resistance to pH (pH 6 to 12) relative to non-ozone-treated cells when grown at 37°C for 24 h. The heat treatment also resulted in decreased numbers of surviving cells above and below neutral pH values for both E. coli O157:H7 and L. monocytogenes relative to those of non-heat-treated cells grown at 37°C for 24 h. There were significant differences (P < 0.05) in C. perfringens reductions with increasing NaCl concentrations. The effects of NaCl were less apparent for E. coli and L. monocytogenes survivors. It is concluded that pathogens surviving ozone treatment of beef are less likely to endanger food safety than are those surviving sublethal heat treatments.


Document Type: Research Article

Affiliations: 1: U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Microbial Food Safety Research Unit, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038 2: American Air Liquide, Chicago Research Center, 5230 South East Avenue, Countryside, Illinois 60525, USA

Publication date: March 1, 2003

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more