Molecular Characterization of Arcobacter Isolates Collected in a Poultry Slaughterhouse

$37.00 plus tax (Refund Policy)

Buy Article:


In a poultry slaughterhouse, Arcobacter contamination was examined over a period of 1 week to establish possible routes of contamination. Samples were collected from the slaughter equipment and from processing water before the onset of slaughter and from the first broiler flock slaughtered on each sampling day. Characterization of 1,079 isolates by enterobacterial repetitive intergenic consensus-polymerase chain reaction and a random amplified polymorphic DNA assay resulted in the delineation of 159 Arcobacter butzleri and 139 Arcobacter cryaerophilus types. From almost all 140 neck skin samples collected before and after evisceration, A. butzleri and A. cryaerophilus were isolated simultaneously at contamination levels ranging from 101 to 104 CFU/g. Only six A. butzleri types present in the slaughterhouse environment were also present on the broiler carcasses. None of the A. cryaerophilus genotypes were detected in both the neck skin and the environmental samples. All A. butzleri types isolated from the feather samples were also isolated from broiler neck skin samples. The slaughter equipment was contaminated with arcobacters before the onset of slaughter, but it appeared unlikely that contamination through the slaughter equipment alone explained the high contamination levels on poultry products. Arcobacters were also present in processing water, but types present in water and poultry products were different. Characterization of the Arcobacter isolates did not clarify the routes of transmission, probably because of the extreme heterogeneity among Arcobacter isolates. However, the results obtained in this study brought to light insufficient decontamination at the processing plant involved in the study and confirmed the survival capacity of certain A. butzleri strains.


Document Type: Research Article

Affiliations: 1: Department of Veterinary Food Inspection, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium 2: Department of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium

Publication date: March 1, 2003

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: or Web site:
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more