Skip to main content

Susceptibility of Human Rotavirus to Ozone, High Pressure, and Pulsed Electric Field

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Abstract:

The rotavirus causes a food-transmitted gastroenteritis that affects mainly children. Currently, the food industry is interested in alternative food-processing technologies, but research on the control of food-transmitted viruses by these technologies is limited. In this study, the human rotavirus was cultured on MA104 cells, and suspensions of the virus were prepared and treated with ozone, high pressure, and pulsed electric field (PEF). Virus viability was quantified as 50% tissue culture infectious doses (TCID50) per milliliter. Ozone at 25 μg/ml decreased rotavirus infectivity by 8 to 9 log10 TCID50/ml. High pressure was extremely effective against the rotavirus; treatment with 300 MPa for 2 min at 25°C inactivated ~8 log10 TCID50/ml. A small fraction of the virus population, however, remained resistant to pressure treatments of up to 800 MPa for 10 min. Viruses surviving these extreme pressures showed a cytopathic effect different from that of the untreated viruses. The rotavirus was found to be resistant to PEF treatment at 20 to 29 kV/cm, for which no appreciable reductions in virus titer were observed.

Keywords:

Document Type: Research Article

Affiliations: Department of Food Science and Technology, Ohio State University, 2015 Fyffe Road, Parker Hall, Columbus, Ohio 43210, USA

Publication date:

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more