Skip to main content

Inactivation of Foodborne Pathogens in Milk Using Dynamic High Pressure

Buy Article:

$37.00 plus tax (Refund Policy)


Improving the microbiological safety of perishable foods is currently a major preoccupation in the food industry. The aim of this study was to investigate the inactivation of three major food pathogens (Listeria monocytogenes [LSD 105-1], Escherichia coli O157:H7 [ATCC 35150], and Salmonella enterica serotype Enteritidis ATCC [13047]) by dynamic high pressure (DHP) in order to evaluate its potential as a new alternative for the cold pasteurization of milk. The effectiveness of DHP treatment against L. monocytogenes, E. coli O157:H7, and Salmonella Enteritidis was first evaluated in 0.01 M phosphate-buffered saline (PBS) at pH 7.2 as a function of applied pressure (100, 200, and 300 MPa) and of the number of passes (1, 3, and 5) at 25°C. A single pass at 100 MPa produced no significant inactivation of the three pathogens, while increasing the pressure up to 300 MPa or the number of passes to five increased inactivation. From an initial count of 8.3 log CFU/ml, complete inactivation of viable L. monocytogenes was achieved after three successive passes at 300 MPa, while 200-MPa treatments with three and five passes completely eliminated viable Salmonella Enteritidis and E. coli O157:H7, respectively. The effectiveness of DHP for the inactivation of these pathogens was compared to that of hydrostatic high pressure (HHP) using the same pressure (200 MPa, single pass at 25°C). In general, two additional log reductions in viable count were obtained with DHP. DHP was less effective against L. monocytogenes and E. coli O157:H7 in raw milk than in PBS. After five passes at 200 MPa, an 8.3-log reduction was obtained for E. coli O157:H7, while a reduction of about 5.8 log CFU/ml was obtained for L. monocytogenes exposed to 300 MPa for five passes. Exposing milk or buffer samples to mild heating (45 to 60°C) prior to dynamic pressurization enhanced the lethal effect of DHP. The inactivation of pathogens also depended on the initial bacterial concentration. The highest reduction was obtained when the bacterial load did not exceed 105 CFU/ml. In conclusion, DHP was shown to be very effective for the destruction of the tested pathogens. It offers a promising alternative for the cold pasteurization of milk and possibly other liquid foods.


Document Type: Research Article

Affiliations: 1: Centre de recherche STELA, Université Laval, Québec, Canada G1K 7P4 2: Centre de recherche STELA, Université Laval, Québec, Canada G1K 7P4 and Department of Dairy Science and Technology, Faculty of Agriculture, University of Alexandria, Egypt

Publication date: February 1, 2002

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more