If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Differentiation of Viable and Dead Escherichia coli O157:H7 Cells on and in Apple Structures and Tissues following Chlorine Treatment

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Confocal scanning laser microscopy (CSLM) was used to differentiate viable and nonviable cells of Escherichia coli O157:H7 on and in raw apple tissues following treatment with water and 200 or 2,000 ppm active chlorine solution. Whole unwaxed Red Delicious cultivar apples at 25°C were inoculated by dipping in a suspension of E. coli O157:H7 (8.48 log10 CFU/ml) at 4°C, followed by treatment in water or chlorine solution at 21°C for 2 min. The dead cells on and in apples were distinguished from live cells by treating tissue samples with SYTOX green nucleic acid stain. Viable and dead cells were then labeled with an antibody conjugated with a fluorescent dye (Alexa Fluor 594). The percentage of viable cells on the apple surface, as well as at various depths in surface and internal structures, was determined. The mean percentages of viable cells located at the sites after treatment with water or chlorinated water were in the following order, which also reflects the order of protection against inactivation: floral tube wall (20.5%) > lenticels (15.0%) > damaged cuticle surrounding puncture wounds (13.0%) > intact cuticle (8.1%). The location of viable cells within tissues was dependent on the structure. Except for lenticels, the percentage of viable cells increased as depth into the CSLM stacks increased, indicating that cells attached to subsurface structures were better protected against inactivation with chlorine than were cells located on exposed surfaces. Further research is warranted to investigate the efficacy of other chemical sanitizers, as well as that of surfactants and solvents in combination with sanitizers, in removing or killing E. coli O157:H7 lodged in protective structures on the surface and within tissues of apples.

Keywords:

Document Type: Research Article

Affiliations: Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA

Publication date: February 1, 2002

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more