Skip to main content

Process Engineering Variables in the Spray Washing of Meat and Produce

Buy Article:

$37.00 plus tax (Refund Policy)

Abstract:

Recently, much attention has been focused on the safety of fruits and vegetables. Washing is a fundamental operation in the processing of produce. Aqueous spray energy can be, and often is, used to remove mineral, chemical, or biological contaminants from produce. A few advantages of spray washing over washing by dipping, soaking, or gravity rinse are increased energy directed to contaminants, reduced volume of water use and wastewater generation, and reduced water uptake by produce. The kinetic energy of the spray droplets produces the cleaning action. Increased spray pressure increases energy. If the energy is too great, produce may be physically damaged. If the energy is too little, the surface may not be cleaned. Indeed, studies on meat have shown that water pressures ranging from 1,379 to 2,070 kPa (200 to 300 psi) are effective in reducing microbial contamination, and a water flow rate of 7.5 liters/min is recommended. Water temperature >70°C has been found to reduce bacterial counts in carcass tissue by 2 to 3 log CFU/cm2. These levels are likely too high for the fragile produce; hence, the main function of spray washing in produce applications will probably shift to being a delivery system for antimicrobial agents. Several other equipment, process, and product variables are relevant to the optimization of such a system. Qualities of the spray, such as droplet spectrum, droplet velocity, angle of droplet impingement, number and orientation of nozzles, spray rate, and resident time of the produce in the sprayer, also can be manipulated to adjust the amount of energy directed to the surface. There is a need to scientifically investigate the effects of these processes and equipment parameters on the removal of microbiological contaminants on meats and produce. Such empirical investigations guided by the results from fundamental studies about produce surface characteristics and the mechanism of bacterial attachment to plant tissue surfaces would allow for the efficient development of spray washers that effectively decontaminate produce.

Keywords:

Document Type: Research Article

Affiliations: 1: Department of Agricultural and Biosystems Engineering, The University of Tennessee, Knoxville, Tennessee 37901-1071, USA 2: Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, Kentucky 40546-0276, USA 3: Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania 16802-2504, USA

Publication date: January 1, 2002

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
iafp/jfp/2002/00000065/00000001/art00036
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more