A Probability of Growth Model for Escherichia coli O157:H7 as a Function of Temperature, pH, Acetic Acid, and Salt

$37.00 plus tax (Refund Policy)

Buy Article:


Data accumulated on the growth of Escherichia coli O157:H7 in tryptic soy broth (TSB) were used to develop a logistic regression model describing the growth-no growth interface as a function of temperature, pH, salt, sucrose, and acetic acid. A fractional factorial design with five factors was used at the following levels: temperature (10 to 30°C), acetic acid (0 to 4%), salt (0.5 to 16.5%), sucrose (0 to 8%), and pH (3.5 to 6.0). A total of 1,820 treatment combinations were used to create the model, which correctly predicted 1,802 (99%) of the points, with 10 false positives and 8 false negatives. Concordance was 99.9%, discordance was 0.1%, and the maximum rescaled R 2 value was 0.927. Acetic acid was the factor having the most influence on the growth-no growth interface; addition of as little as 0.5% resulted in an increase in the observed minimum pH for growth from 4.0 to 5.5. Increasing the salt concentration also had a significant effect on the interface; at all acetic acid concentrations, increasing salt increased the minimum temperature at which growth was observed. Using two literature data sets (26 conditions), the logistic model failed to predict growth in only one case. The results of this study suggest that the logistic regression model can be used to make conservative predictions of the growth-no growth interface of E. coli O157:H7.


Document Type: Research Article

Affiliations: Food Research Program, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9

Publication date: December 1, 2001

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more