Skip to main content

Survival of Listeria monocytogenes Attached to Stainless Steel Surfaces in the Presence or Absence of Flavobacterium spp.

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Contaminated surfaces of food processing equipment are believed to be a significant source of Listeria monocytogenes to foods. However, very little is known about the survival of Listeria in processing environments. In a mixed bacterial biofilm of L. monocytogenes and Flavobacterium spp., the number of L. monocytogenes cells attaching to stainless steel increased significantly compared to when L. monocytogenes was in a pure culture. The L. monocytogenes cells in the mixed biofilms were also recoverable for significantly longer exposure periods. On colonized coupons held at 15°C and 75% humidity, decimal reduction times were 1.2 and 18.7 days for L. monocytogenes in pure and mixed biofilms, respectively. With increasing exposure time, the proportion of cells that were sublethally injured (defined as an inability to grow on selective agar) increased from 8.1% of the recoverable cell population at day 0 to 91.4% after 40 days' exposure. At 4 and -20°C, decimal reduction times for L. monocytogenes in pure culture were 2.8 and 1.4 days, respectively, and in mixed culture, 10.5 and 14.4 days, respectively. The enhanced colonization and survival of L. monocytogenes on ''unclean'' surfaces increase the persistence of this pathogen in food processing environments, while the increase in the percentage of sublethally injured cells in the population with time may decrease the ability of enrichment regimes to detect it.

Keywords:

Document Type: Research Article

Affiliations: 1: New Zealand Institute for Crop & Food Research Limited, Food Science, University of Otago, Dunedin, New Zealand 2: Seafood Research Unit, New Zealand Institute for Crop & Food Research Limited, Nelson, New Zealand

Publication date: 2001-09-01

More about this publication?
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more