Skip to main content

Response Surface Modeling for the Inactivation of Escherichia coli O157:H7 on Green Peppers (Capsicum annuum L.) by Chlorine Dioxide Gas Treatments

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Abstract:

The effects of chlorine dioxide (ClO2) gas concentration (0.1 to 0.5 mg/liter), relative humidity (RH) (55 to 95%), treatment time (7 to 135 min), and temperature (5 to 25°C) on inactivation of Escherichia coli O157:H7 on green peppers were studied using response surface methods. A four-factor, central, composite, rotatable design was used. The microbial log reduction was measured as a response. A direct membrane-surface-plating method with tryptic soy agar and sorbitol MacConkey agar was used to resuscitate and enumerate ClO2-treated E. coli O157:H7 cells. The statistical analysis and the predictive model developed in this study suggest that ClO2 gas concentration, treatment time, RH, and temperature all significantly (P < 0.01) increased the inactivation of E. coli O157:H7. ClO2 gas concentration was the most important factor, whereas temperature was the least significant. The interaction between ClO2 gas concentration and RH indicated a synergistic effect. The predictive model was validated, and it could be used to determine effective ClO2 gas treatments to achieve a 5-log reduction of E. coli O157:H7 on green peppers.

Keywords:

Document Type: Research Article

Affiliations: Department of Food Science, Purdue University, West Lafayette, Indiana 47907-1160, USA

Publication date:

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more