Skip to main content

UV Inactivation, Liquid-Holding Recovery, and Photoreactivation of Escherichia coli O157 and Other Pathogenic Escherichia coli Strains in Water

Buy Article:

$37.00 plus tax (Refund Policy)


Drinking water, water used in food production and for irrigation, water for fish farming, waste water, surface water, and recreational water have been recently recognized as a vector for the transmission of pathogenic Escherichia coli, especially serotype O157:H7. We investigated the UV (253.7 nm) inactivation behavior and the capability of dark repair (liquid-holding recovery) and photoreactivation of seven pathogenic (including three enterohemorrhagic E. coli) strains and one nonpathogenic strain of E. coli (ATCC 11229) with respect to the use of UV light for water disinfection purposes. Because most bacteria and yeast are known to be able to repair UV damage in their nucleic acids, repair mechanisms have to be considered to ensure safe water disinfection. We found a wide divergence in the UV susceptibility within the strains tested. A 6-log reduction of bacteria that fulfills the requirement for safe water disinfection was reached for the very most susceptible strain O157:H7 (CCUG 29199) at a UV fluence of 12 J/m2, whereas for the most resistant strain, O25:K98:NM, a UV fluence of about 125 J/m2 was needed. Except for one strain (O50:H7) liquid-holding recovery did not play an important role in recovery after UV irradiation. By contrast, all strains, particularly strains O25:K98:NM, O78:K80:H12, and O157:H7 (CCUG 29193), demonstrated photorepair ability. For a 6-log reduction of these strains, a UV fluence (253.7 nm) up to 300 J/m2 is required. The results reveal that the minimum fluence of 400 J/m2 demanded in the Austrian standard for water disinfection is sufficient to inactivate pathogenic E. coli. A fluence of 160 J/m2 (recommendation in Norway) or 250 J/m2 (recommendation in Switzerland) cannot be regarded as safe in that respect.

Document Type: Research Article

Affiliations: 1: Hygiene Institute, University of Vienna, Austria 2: Institute of Environmental Hygiene, University of Vienna, Austria 3: Institute of Medical Physics and Biostatistics, University of Veterinary Medicine, Vienna, Austria

Publication date: August 1, 2000

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more