If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Development and Characterization of a Carbon-Based Composite Material for Reducing Patulin Levels in Apple Juice

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Patulin, a heterocyclic lactone produced by various species of Penicillium and Aspergillus fungi, is often detected in apple juices and ciders. Previous research has shown the effectiveness of granular activated carbon for reducing patulin levels in aqueous solutions, apple juices, and ciders. In this study, ultrafine activated carbon was bonded onto granular quartz to produce a composite carbon adsorbent (CCA) with a high carbonaceous surface area, good bed porosity, and increased bulk density. CCA in fixed-bed adsorption columns was evaluated for efficacy in reducing patulin levels from aqueous solutions and apple juice. Columns containing 1.0, 0.5, and 0.25 g of CCA were continuously loaded with a patulin solution (10 μg/ml) and eluted at a flow rate of 1 ml/min. Results indicated that 50% breakthrough capacities for patulin on 1.0-, 0.5-, and 0.25-g CCA columns were 137.5, 38.5, and 19.9 μg, respectively. The effectiveness of CCA to adsorb patulin and prevent toxic effects was confirmed in vitro using adult hydra in culture. Hydra were sensitive to the effects of patulin, with a minimal affective concentration equal to 0.7 μg/ml; CCA adsorption prevented patulin toxicity until 76% breakthrough capacity was achieved. Fixed-bed adsorption with 1.0 g of CCA was also effective in reducing patulin concentrations (20 μg/liter) in a naturally contaminated apple juice, and breakthrough capacities were shown to increase with temperature. Additionally, CCA offered a higher initial breakthrough capacity than pelleted activated carbon when compared in parallel experiments. This study suggests that CCA used in fixed-bed adsorption systems effectively reduced patulin levels in both aqueous solutions and naturally contaminated apple juice; however, the appearance and taste of apple juice may be affected by the treatment process.

Document Type: Research Article

Affiliations: Department of Veterinary Anatomy & Public Health, Texas A&M University, College Station, Texas 77843-4458, USA

Publication date: January 1, 2000

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more