Effect of L-Glucose and D-Tagatose on Bacterial Growth in Media and a Cooked Cured Ham Product

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Cured meats such as ham can undergo premature spoilage on account of the proliferation of lactic acid bacteria. This spoilage is generally evident from a milkiness in the purge of vacuum-packaged sliced ham. Although cured, most hams are at more risk of spoilage than other types of processed meat products because they contain considerably higher concentrations of carbohydrates, ∼2 to 7%, usually in the form of dextrose and corn syrup solids. Unfortunately, the meat industry is restricted with respect to the choice of preservatives and bactericidal agents. An alternative approach from these chemical compounds would be to use novel carbohydrate sources that are unrecognizable to spoilage bacteria. L-Glucose and D-tagatose are two such potential sugars, and in a series of tests in vitro, the ability of bacteria to utilize each as an energy source was compared to that of D-glucose. Results showed that both L-glucose and D-tagatose are not easily catabolized by a variety of lactic bacteria and not at all by pathogenic bacteria such as Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus, Bacillus cereus, and Yersinia enterocolitica. In a separate study, D-glucose, L-glucose, and D-tagatose were added to a chopped and formed ham formulation and the rate of bacterial growth was monitored. Analysis of data by a general linear model revealed that the growth rates of total aerobic and lactic acid bacteria were significantly (P < 0.05) slower for the formulation containing D-tagatose than those containing L- or D-glucose. Levels of Enterobacteriaceae were initially low and these bacteria did not significantly (P < 0.20) change in the presence of any of the sugars used in the meat formulations. Compared to the control sample containing D-glucose, the shelf life of the chopped and formed ham containing D-tagatose at 10°C was extended by 7 to 10 days. These results indicate that D-tagatose could deter the growth of microorganisms and inhibit the rate of spoilage in a meat product containing carbohydrates.

Document Type: Research Article

Affiliations: Saskatchewan Food Product Innovation Program, Department of Applied Microbiology and Food Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8

Publication date: January 1, 2000

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at www.foodprotection.org.
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more