If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Heat Resistance of Salmonella weltevreden in Low-Moisture Environments

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The heat resistance of Salmonella weltevreden inoculated into flour and heated in hot air was determined for (a) an initial water activity (aw) range of 0.20 to 0.60 prior to heating, (b) a range of storage relative humidities of 6.0 to 35.5% prior to heating, and (c) temperatures of 57 to 77°C. The death curves obtained were biphasic, demonstrating an initial rapid decline in the numbers of survivors (1.0- to 1.5-log reductions) during the first 5 to 10 min of heating for all the temperature-water activity combinations tested. Following this initial rapid decline in the number of cells, a linear survivor curve was obtained where inactivation occurred at a slower rate. The initial decline in survivors coincided with a rapid decrease in the water activity of all the samples tested. Irrespective of the initial water activity level in the samples prior to heating, the aw decreased to <0.2 during the first 5 to 10 min of heating. The D values obtained for these experimental parameters ranged from a D 60–62 of 875 min at an initial aw of 0.4 to a D 63–65 of 29 min at an initial aw of 0.5. The results demonstrated that, for any temperature, as the initial water activity of the sample prior to heating decreased, the heat resistance of the cells increased. The z values obtained from these data ranged from 15.2 to 53.9°C. The relative humidity during storage prior to heating did not appear to have a significant effect on the heat resistance of S. weltevreden in flour. These results demonstrate that the amount of available water in foods that are considered to be "dry" (i.e., with a water activity less than 0.60) will significantly influence the effectiveness of the heat processing of foods and, in addition to the temperature, the aw prior to heating is a critical controlling factor during these processes.

Document Type: Research Article

Affiliations: Department of Microbiology, Campden & Chorleywood Food Research Association, Chipping Campden, Glos, GL55 6LD, United Kingdom

Publication date: August 1, 1998

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more