If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Comparison of Water Wash, Trimming, and Combined Hot Water and Lactic Acid Treatments for Reducing Bacteria of Fecal Origin on Beef Carcasses

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

Cleaning treatments, such as high-pressure water wash at 35°C or trim, alone and combined with sanitizing treatments, such as hot water (95°C at the source), warm (55°C) 2% lactic acid spray, and combinations of these two sanitizing methods, were compared for their effectiveness in reducing inoculated numbers (5.0 to 6.0 log CFU/cm2) of Salmonella typhimurium, Escherichia coli O157:H7, aerobic plate counts, Enterobacteriaceae, total coliforms, thermotolerant coliforms, and generic E. coli on hot beef carcass surface areas in a model carcass spray cabinet. Log reductions in numbers of all tested organisms by water wash or trim alone were significantly smaller than the log reductions obtained by the different combined treatments. Regardless of the cleaning treatment (water wash or trim) or surface area, the range for mean log reductions by hot water was from 4.0 to >4.8 log CFU/cm2, by lactic acid spray was from 4.6 to >4.9 log CFU/cm2, by hot water followed by lactic acid spray was from 4.5 to >4.9 log CFU/cm2, and by lactic acid spray followed by hot water was from 4.4 to >4.6 log CFU/cm2, for S. typhimurium and E. coli O157:H7. Identical reductions were obtained for thermotolerant coliforms and generic E. coli. No differences in bacterial reductions were observed for different carcass surface regions. Water wash and trim treatments caused spreading of the contamination to other areas of the carcass surface while providing an overall reduction in fecal or pathogenic contamination on carcass surface areas. This relocated contamination after either water wash or trim was most effectively reduced by following with hot water and then lactic acid spray. This combined treatment yielded 0% positive samples for S. typhimurium, E. coli O157:H7, thermotolerant coliforms, and generic E. coli on areas outside the inoculated areas, whereas percent positive samples after applying other combined treatments ranged from 22 to 44% for S. typhimurium, 0 to 44% for E. coli O157:H7, and 11 to 33% for both thermoto1erant coliforms and generic E. coli. From data collected in this study, it is possible to choose an effective, inexpensive treatment to reduce bacterial contamination on beef carcasses. In addition, the similar reduction rates of total coliforms, thermotolerant coliforms, or generic E. coli may be useful in identifying an indicator to verify the effectiveness of the selected treatment as a critical control point in a Hazard Analysis and Critical Control Point program.

Document Type: Research Article

Affiliations: Institute of Food Science and Engineering, Center for Food Safety, Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA

Publication date: July 1, 1998

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more