Skip to main content

Survival of Escherichia coli O157:H7 in Full- and Reduced-Fat Pepperoni after Manufacture of Sticks, Storage of Slices at 4°C or 21°C under Air and Vacuum, and Baking of Slices on Frozen Pizza at 135, 191 and 246°C

Buy Article:

$37.00 plus tax (Refund Policy)


Pepperoni batter was prepared with fat contents of about 15, 20, and 32% (wt/wt) and inoculated with a pediococcal starter culture and ≥2.0 × 107 CFU/g of a five-strain inoculum of Escherichia coli O157:H7. The batter was fermented at 96°F (ca. 36°C) and 85% relative humidity (RH) to pH ≤ 4.8 and then dried at 55°F (ca. 13°C) and 65% RH to a moisture/protein ratio of ≤1.6:1. For storage, slices were packaged under air or vacuum and stored at 39°F (ca. 4°C) and 70°F (ca. 21°C). For baking, frozen slices were placed on retail frozen cheese pizzas that were subsequently baked at 275°F (ca. 135°C), 375°F (ca. 191°C), or 475°F (ca. 246°C) for 0 to 20 min. Appreciable differences related to fat levels were observed after drying; pathogen numbers decreased by 1.04, 1.31 and 1.62 log10 units in sticks prepared from batter at initial fat levels of 15, 20, and 32%, respectively. During storage, the temperature rather than the atmosphere had the greater effect on pathogen numbers, with similar viability observed among the three fat levels tested. At 70°F (ca. 21°C), compared to original levels, pathogen numbers decreased by ≥5.56 and ≥4.53 log10 units within 14 days in slices stored under air and vacuum, respectively, whereas at 39°F (ca. 4°C) numbers decreased by ≤2.43 log10 CFU/g after 60 days of storage under either atmosphere. Baking, as expected, resulted in greater reductions in pathogen numbers as the temperature and/or time of baking increased. However, it was still possible to recover the pathogen by enrichment after baking frozen slices on frozen pizza at 475°F (ca. 246°C) for 10 min or at 375°F (ca. 191°C) for 15 min. The calculated D values for all three temperatures tested increased as the fat content of the batter increased from 15 to 20 to 32%. The present study confirmed that fermentation and drying were sufficient to reduce levels of E. coli O157:H7 in pepperoni sticks by <2.0 log10 CFU/g. Storage of slices for at least 14 days at ambient temperature under air resulted in a >5.5-log10-unit total reduction of the pathogen. Baking slices on frozen pizza for at least 15 min at 475°F (ca. 246°C) or 20 min at 375°F (ca. 191°C) was necessary to reduce pathogen numbers to below detection by both direct plating and enrichment.

Document Type: Research Article

Affiliations: 1: Department of Food Microbiology and Toxicology, Food Research Institute, University of Wisconsin, Madison, Wisconsin 53706, USA 2: Department of Food Microbiology and Toxicology, Food Research Institute, University of Wisconsin, Madison, Wisconsin 53706, USA; Department of Food Science, University of Wisconsin, Madison, Wisconsin 53706, USA

Publication date: April 1, 1998

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more