If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Effects of Lactobacillus spp. on Cytokine Production by RAW 264.7 Macrophage and EL-4 Thymoma Cell Lines

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

We have hypothesized that lactobacilli used in fermented dairy products can stimulate immune function via enhancing cytokine secretion by leukocytes. To test the effects of lactobacilli on cytokine production, RAW 264.7 cells (macrophage model) and EL4.IL-2 thymoma cells (T helper cell model) were cultured in the presence of 16 representative strains of heat-killed Lactobacillus spp. cells. In unstimulated RAW 264.7 cells, most lactobacilli, when present at concentrations from 106 to 108 bacterial cells per ml, induced marked tumor necrosis factor alpha (TNF-α) production (up to 411-fold) compared to the negligible TNF-α in controls. A strain-dependent increase in interleukin 6 (IL-6) production (up to 88-fold) was also observed without stimulation at concentrations of 108 bacteria per ml. Upon concurrent stimulation of RAW 264.7 cells with lipopolysaccharide, both IL-6 and TNF-α production were enhanced between 4.2- and 10.6-fold and 1.8- and 8.7-fold, respectively, when cultured with 108 lactobacilli per ml. In unstimulated EL4.IL-2 cells, lactobacilli had no effect on interleukin 2 (IL-2) or interleukin 5 (IL-5) production. Upon stimulation of EL4.IL-2 cells with phorbol 12-myristate-13-acetate, IL-2 secretion increased up to 1.9-fold in the presence of 106 L. bulgaricus Lr 79 cells per ml whereas this cytokine decreased in the presence of 107 or 108 lactobacilli per ml. In contrast, IL-5 secretion increased in the presence of increasing concentrations of lactobacilli (up to 3.1-fold with 108 L. bulgaricus NCK 231 cells per ml). The results indicated that direct interaction of most lactobacilli with macrophages resulted in a concentration-dependent enhancement of cytokine production, whereas the effects on cytokine production by the T-cell model were smaller and strain dependent. The in vitro approaches employed here should be useful in further characterization of the effects of lactobacilli on the gut and systemic immune systems.

Keywords: IL-2; IL-5; IL-6; IMMUNE SYSTEM; LACTIC ACID BACTERIA; MACROPHAGE; T CELL; TNF ALPHA; YOGURT

Document Type: Research Article

Affiliations: 1: Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA; Departamento de Nutricion y Bromato1ogia III, Facultad de Veterinaria, Universidad Comp1utense, 28040 Madrid, Spain 2: Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA 3: Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA; Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1224, USA; National Center for Food Safety and Toxicology, Michigan State University, East Lansing, Michigan 48824-1224, USA

Publication date: November 1, 1997

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more