Skip to main content

Diversity of Listeria Ribotypes Recovered from Dairy Cattle, Silage, and Dairy Processing Environments

Buy Article:

$37.00 plus tax (Refund Policy)


Listeria strains isolated over the past 10 years from farms and dairy processing environments were subjected to strain-specific ribotyping using the automated Riboprinter microbial characterization system, alpha version (E. I. du Pont de Nemours & Co., Inc.). A total of 388 Listeria isolates from 20 different dairy processing facilities were examined along with 44 silage, 14 raw milk bulk tank, and 29 dairy cattle (26 udder quarter milk, 1 brain, 1 liver, and 1 aborted fetus) isolates. These 475 isolates included 93 L. monocytogenes, 362 L. innocua, 11 L. welshimeri, 6 L. seeligeri, 2 L. grayi, and 1 L. ivanovii strains. Thirty-seven different Listeria ribotypes (RTs) comprising 16 L. monocytogenes (including five known clinical RTs responsible for foodborne listeriosis), 12 L. innocua, 5 L. welshimeri, 2 L. seeligeri, 1 L. ivanovii, and 1 L. grayi were identified. Greatest diversity was seen among isolates from dairy processing facilities with 14 of 16 (87.5%) of the L. monocytogenes RTs (including five clinical RTs) and 19 of 21 (90.5%) of the non-L. monocytogenes RTs detected. Sixty-five of the 93 L. monocytogenes isolates belonged to a group of five clinical RTs. These five clinical RTs included one RT unique to dairy processing environments, two RTs common to dairy processing environments and silage, and one RT common to dairy processing environments, silage, and dairy cattle with the last RT appearing in dairy processing environments, silage, raw milk bulk tanks, and dairy cattle. These findings, which support the link between on-farm sources of Listeria contamination (dairy cattle, raw milk, silage) and subsequent contamination of dairy processing environments, stress the importance of farm-based HACCP programs for controling listeriae.


Document Type: Research Article

Affiliations: 1: Department of Public Health, Pharmacology and Toxicology, University of Nairobi, P.O. Box 29053, Kabete–Nairobi, Kenya 2: Department of Animal and Food Sciences, 203 Carrigan Hall, University of Vermont, Bington, VT 05405, USA

Publication date: July 1, 1997

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more