If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Thermal Inactivation of Escherichia coli O157:H7, Salmonella senftenberg, and Enzymes with Potential as Time-Temperature Indicators in Ground Beef

$37.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The USDA has established processing schedules for beef products based on the destruction of pathogens. Several enzymes have been suggested as potential indicators of heat processing. However, no relationship between the inactivation rates of these enzymes and those of pathogenic microorganisms has been determined. Our objective was to compare the thermal inactivation of Escherichia coli O157:H7 and Salmonella senftenberg to those of endogenous muscle proteins. Inoculated and noninoculated ground beef samples were heated at four temperatures for predetermined intervals of time in thermal-death-time studies. Bacterial counts were determined and enzymes were assayed for residual activity. The D values for E. coli O157:H7 were 46.10, 6.44, 0.43, and 0.12 min at 53, 58, 63, and 68°C, respectively, with a z value of 5.60°C. The D values for S. senftenberg were 53.00, 15.17, 2.08, and 0.22 min at 53, 58, 63, and 68°C, respectively, with a z value of 6.24°C. Apparent D values at 53, 58, 63, and 68°C were 352.93, 26.31, 5.56, and 3.33 min for acid phosphatase; 6968.64, 543.48, 19.61, and 1.40 min for lactate dehydrogenase; and 3870.97, 2678.59, 769.23, and 42.92 min for peroxidase; with z values of 7.41, 3.99, and 7.80°C, respectively. Apparent D values at 53, 58, 63, and 66°C were 325.03, 60.07, 3.07, and 1.34 min for phosphoglycerate mutase; 606.72, 89.86, 4.40, and 1.28 min for glyceraldehyde-3-phosphate dehydrogenase; and 153.06, 20.13, 2.25, and 0.74 min for triose phosphate isomerase; with z values of 5.18, 4.71, and 5.56°C, respectively. The temperature dependence of triose phosphate isomerase was similar to those of both E. coli O157:H7 and S. senftenberg, suggesting that this enzyme could be used as an endogenous time-temperature indicator in beef products.

Keywords: E. COLI; ENZYMES; GROUND BEEF; SALMONELLA; THERMAL DEATH TIME

Document Type: Research Article

Affiliations: Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA

Publication date: May 1, 1997

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more