If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Use of a Modified Gompertz Equation to Model Nonlinear Survival Curves for Listeria monocytogenes Scott A

$37.00 plus tax (Refund Policy)

Buy Article:


The heat resistance of Listeria monocytogenes was determined in 0.1 M KH2PO4 buffer at three temperatures (50, 55, and 60°C), three pH levels (5, 6, and 7), and three NaCl concentrations (0, 2, and 4%). Survival curves were fit using nonlinear regression with a modified Gompertz equation. The Gompertz equation is capable of fitting survival curves which are linear, those which display an initial lag region followed by a linear region, and those which are sigmoidal. Parameter estimates were used to describe the lag region, death rate, and the tailing region of a survival curve. These estimates were also used to predict single and interactive effects of temperature, pH, and percentage of NaCl on the log surviving fraction (LSF) of bacteria. Interactions among these variables significantly (P < .05) affected the LSF. Generally, increased pH or NaCl concentration lead to an increased (P < .05) LSF, whereas increased time or temperature lead to a decreased (P < .05) LSF. All multiple factor interactions significantly (P < .05) affected the LSF. These interactions differed depending on the heating medium and the region of the survival curve. The correlation of observed LSF and predicted LSF (R 2 = .89) indicated that the Gompertz equation was in close agreement with the observations. This study demonstrated that the Gompertz equation and nonlinear regression can be used as an effective means to predict survival curve shape and response to heat of L. monocytogenes in many different environmental conditions.


Document Type: Research Article

Affiliations: 1: Department of Food Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA 2: Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia 23298 USA

Publication date: September 1, 1995

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more