Mechanism of Fumonisin Toxicity and Carcinogenesis

Authors: Riley, Ronald T.1; Voss, Kenneth A.1; Yool, Hwan -Soo C.A.2; Merrill, Alfred H.3

Source: Journal of Food Protection®, Number 6, June 1994, pp. 460-546 , pp. 528-535(8)

Publisher: International Association for Food Protection

Buy & download fulltext article:

OR

Price: $37.00 plus tax (Refund Policy)

Abstract:

What are the molecular events that fumonisin-induced porcine pulmonary edema syndrome and equine leucoencephalomalacia have in common? Do these animal diseases relate mechanistically to fumonisin toxicity in laboratory rats? There is considerable data indicating that disruption of sphingolipid metabolism plays an important early role in all of these diseases. In vitro studies have revealed that fumonisins and structurally related Alternaria alternata f. sp. lycopersici-toxin (AAL-toxin) are potent inhibitors of the enzyme sphinganine (sphingosine) N-acyl transferase (ceramide synthase). Soon after cultured cells or animals are exposed to fumonisins there is a dramatic increase in the free sphingoid base, sphinganine, in tissues, serum and/or urine. Also, free sphingosine concentration increases, complex sphingolipid concentration decreases, and sphingoid base degradation products and other lipid products also increase. It is hypothesized that disruption of sphingolipid metabolism is an early molecular event in the onset and progression of cell injury and the diseases associated with consumption of fumonisins. However, the exact mechanisms responsible for the diseases will not be easily revealed since the role of sphingolipids in cellular regulation is very complex and not yet fully understood. While fumonisin B1 is non-genotoxic it is a complete carcinogen in rat liver. Recent studies indicate that fumonisins inhibit hepatocyte proliferation in rat liver. It has been hypothesized that hepatotoxicity and effects on hepatocyte proliferation are critical determinants for fumonisin B1 cancer initiation and promotion. Alternatively, recent studies have found that fumonisin B1 has mitogenic activity in cultured fibroblasts. It is conceivable that the mitogenic, cytostatic and cytotoxic potential of fumonisin may all contribute to the animal diseases including liver cancer in rats.

Keywords: CARCINOGENESIS; CERAMIDE SYNTHASE; FUMONISINS; FUSARIUM; TOXIC CORN; TOXICITY; ZEA MAYS

Document Type: Miscellaneous

Affiliations: 1: Toxicology and Mycotoxins Research Unit, U.S. Department of Agriculture/Agricultural Research Service, P.O. Box 5677, Athens, GA 30613 2: PROMEC, Medical Research Council, P.O. Box 19070, Tygerberg 7505, South Africa 3: Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322

Publication date: June 1, 1994

More about this publication?
  • IAFP members must first sign in on the right to access full text articles of JFP

    First published in 1937, the Journal of Food Protection®, is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection® is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to Members and Institutional subscribers. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Information can be obtained by calling +1 800.369.6337; +1 515.276.3344; fax: +1 515.276.8655, E-mail: info@foodprotection.org or Web site: www.foodprotection.org
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content

Tools

Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page