Antibacterial Mechanism of Long-Chain Polyphosphates in Staphylococcus aureus

$37.00 plus tax (Refund Policy)

Buy Article:


The results of previous studies indicated that the antibacterial effects of long-chain polyphosphates (sodium polyphosphate glassy [SPG] and sodium ultraphosphate [UP]) to Staphylococcus aureus ISP40 8325 could be attributed to damage to the cell envelope (cell wall or cell membrane). Also, Ca2+ (0.01 M) or Mg2+ (0.01 M) reversed the bactericidal and bacteriolytic effects of poly phosphates in S. aureus. In the present study, 0.4 M sodium chloride (NaCl) protected the cells from leakage caused by SPG and 0.6 M NaCl protected the cells from leakage by UP. Polymyxin, a peptide antibiotic that causes cell membrane damage, induced leakage even in the presence of 0.6 M NaCl. In the presence of 0.4 M NaCl, bacterial leakage was significantly reduced by disodium ethylenediamine tetraacetate (EDTA), a metal chelator that causes cell wall damage. Bacterial leakage by polyphosphates was significantly greater at pH 8 than at pH 6, which suggested that metal-ion chelation was involved in the antibacterial mechanism. A dialysis membrane (MWCO 100) was used to separate free metal and polyphosphate-bound metal. Levels of free Ca2+ and Mg2+ in polyphosphate-treated cells were significantly lower than those of the cells without polyphosphate. This free-metal dialysis study provided chemical evidence to show that long-chain polyphosphates interacted with S. aureus cell walls by a metal-ion chelation mechanism. In addition, long-chain polyphosphates were shown to bind to the cell wall, chelate metals, and remain bound without releasing metal ions from the cell wall into the suspending medium. A hypothesis is proposed in which the antibacterial mechanism of long-chain polyphosphates is caused by binding of long-chain polyphosphates to the cell wall of early-exponential phase cells of S. aureus ISP40 8325. The polyphosphates chelate structurally essential metals (Ca2+ and Mg2+) of the cell wall, resulting in bactericidal and bacteriolytic effects. The structurally essential metals probably form cross bridges between the teichoic acid chains in the cell walls of gram-positive bacteria.


Document Type: Research Article

Affiliations: 1: Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011 2: Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011; Department of Microbiology, Immunology and Preventive Medicine, Iowa State University, Ames, IA 50011 3: Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011; Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA 50011 4: Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011; Department of Animal Science, Iowa State University, Ames, IA 50011

Publication date: April 1, 1994

More about this publication?
  • IAFP Members with personal subscriptions to JFP Online: To access full-text JFP or JMFT articles, you must sign-in in the upper-right corner using your Ingenta sign-in details (your IAFP Member Login does not apply to this website).

    The Journal of Food Protection (JFP) is a refereed monthly publication. Each issue contains scientific research and authoritative review articles reporting on a variety of topics in food science pertaining to food safety and quality. The Journal is internationally recognized as the leading publication in the field of food microbiology with a readership exceeding 11,000 scientists from 70 countries. The Journal of Food Protection is indexed in Index Medicus, Current Contents, BIOSIS, PubMed, Medline, and many others.

    Print and online subscriptions are available to IAFP Members and institutional subscribers. IAFP Members with a subscription to JFP Online will have access to all available JFP and JMFT content. Online visitors who are not IAFP Members or journal subscribers will be charged on a pay-per-view basis. Membership and subscription information is available at
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • ingentaconnect is not responsible for the content or availability of external websites
Related content



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more