Skip to main content

Light Prestressed Segmented Arch (LPSA) Bridges: A Demonstration of Sustainable Engineering

Buy Article:

$20.00 plus tax (Refund Policy)

A jointing method combining slide-fitting with tension-induced compression is presented. It eliminates the "analysis black box" at each node of a timber structure. Mathematical and computational modeling is further enhanced by the use of small diameter timber (SDT), due to its more predictable natural growthring structure. This is the core concept of the LPSA (light prestressed segmented arch) structural system as applied to timber-in-the-round. It represents a significant leap forward in the sustainable use of timber in construction, offering a sustainable alternative to steel and concrete, especially for bridges. The slidefitting jointing mechanism produces a unique property of harmless distortion energy dissipation via internal rigid-body motion. Therefore, LPSA structures have inherent resistance to the actions of earthquakes, hurricanes and flooding. The LPSA structural system outlines a framework for an urgently needed research, design and innovation field of sustainable engineering, in a world on the verge of environmental instability. SDT is a vast, untapped, sustainable resource. Its use as a premium construction material could provide a recipe for saving what remains of the world's forests and for profitable sustainable development. Two 19,5 m LPSA bridges have recently been constructed, using black locust (Robinia pseudoacacia) SDT. This is a least desirable but decay-resistant species with twoto-three times the crushing strength of concrete.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2008-02-01

More about this publication?
    Write for SEI: Author Guidelines.
    The journal is included in IABSE Membership.
    Yearly subscription: order form.

    Structural Engineering International (SEI), the quarterly Journal of IABSE, published since 1991, is the leading international journal of structural engineering dealing with all types of structures and materials. SEI offers its readers a unique blend of short profiles on recent structures, and longer, in-depth technical articles on research, development, design, construction and maintenance. Articles are written by practicing engineers and academia from around the world and reflect the high standards of IABSE. IABSE Peer Review stamps are given to papers that have passed through a highly selective review process and demonstrate a significant contribution to the state of structural engineering knowledge.To recognise contributions of the highest quality, an Outstanding Paper Award is presented each year.

    SEI is printed in Switzerland; ISSN 1016-8664; E-ISSN 1683-0350
    Abstracted and indexed at: Web of ScienceSM; Science Citation Index Expanded (SciSearch); Journal Citation Reports/Science Edition; Current ContentsR/Engineering, Computing and Technology; CAB Abstracts database; INSPEC, CBA and others.

  • Subscribe to this Title
  • Author Information
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more