Risk Assessment of Selected Insecticides on Tamarixia triozae (Hymenoptera: Eulophidae), a Parasitoid of Bactericera cockerelli (Hemiptera: Trizoidae)

The full text article is not available for purchase.

The publisher only permits individual articles to be downloaded by subscribers.

Abstract:

Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) is an important parasitoid of the potato or tomato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Trizoidae), a serious pest of potato (Solanum tuberosum L.), tomato (Solanum lycopersicum L.), and other solanaceous vegetables in many countries. To produce a marketable crop, insecticides are required when B. cockerelli populations reach economically damaging levels. We evaluated 11 commonly used insecticides for their effects on T. triozae. Glass-surface residues of spinetoram, imidacloprid-cyfluthrin, abamectin, and tolfenpyrad caused 100% mortality of T. triozae in 72 h, and the leaf residue of spinetoram was extremely toxic to T. triozae adults; even 15-d-old residues caused 100% mortality. Cyantraniliprole, fenpyroximate, pymetrozine, spirotetramat, spiromesifen, and chenopodium oil did not cause significant mortality in either glass surface or leaf-residue bioassays. Ingestion of spinetoram, abamectin, and imidacloprid+cyfluthrin (Leverage) by the adults resulted in 100% mortality in 12 h, and tolfenpyrad, 75.0% mortality in 12 h; whereas chenopodium oil and pymetrozine showed moderate effects on adult survival. Ingestion of abamectin, imidacloprid-cyfluthrin, and spinetoram killed all adults in the first day of treatment, whereas female adults in the treatment of pymetrozine lived 80.8 d, which was similar to those in the control. Ingestion of abamectin, imidacloprid-cyfluthrin, chenopodium oil, and spinetoram killed all male adults in the first day, whereas ingestion of other insecticides did not cause significant mortality, but reduced percent parasitism. Abamectin, imidacloprid-cyfluthrin, and spinetoram had the most deleterious effects on T. triozae, and have the least potential for use in integrated control programs using this parasitoid.

Keywords: conservation biological control; natural enemy; potato psyllid; tomato psyllid; toxicity

Document Type: Research Article

DOI: http://dx.doi.org/10.1603/EC11295

Publication date: April 1, 2012

More about this publication?
Related content

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more